

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

1. General Description

The main building blocks are the following:

- Input multiplexer to select the input signal for the ADC, to select the internal or one of the external temperature sensors and to change the polarity of the pressure sensor bridge signal
- Chopper stabilized preamplifier for low noise and excellent drift behavior over temperature and age for the pressure sensor bridge signal
- Current sources for the external temperature sensors and for the internal temperature sensor
- Charge balancing ADC with ratiometric measurement of bridge signal and variable zero point for adapting to the sensor offset and with absolute measurement of temperature sensor signal, select by the input multiplexer
- LIN interface for calibration and testing and for communication in normal operation mode
- PWM output with low side switch (LSS) or high side switch (HSS)
- 3 Wire Interface for fast calibration and testing
- 16 bit calibration microcontroller (CMC) with ROM and EEPROM
- Reference sources, power-on-clear circuit, clock generator
- Voltage regulator to supply the analog and digital parts with an reduced voltage of 5V
- Low resistance switches to allow the reverse polarity at the output pin in PWM mode

The block diagram of the ASSP is shown in figure 1.

Fig. 1: Block diagram of the ZMD31030

ZMD31030 Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

2/16

3. Detailed Description

Analog signal conditioning

The measurement cycle is realized by the source selection of the multiplexer (MUX), controlled by the calibration micro controller (CMC). The MUX selects one of the following 4 input signals:

- Pressure signal bridge output voltage
- the first external temperature sensor supplied by an internal reference current source
- the second external temperature sensor supplied by an internal reference current source
- the internal temperature sensor, supplied by an internal reference current source.

The temperature sensors are realized as semiconductor diodes. Besides the input multiplexer allows to shorten the input wires of the ADC to realize the auto zero cycles and to change the polarity of the bridge inputs.

A complete measurement cycle consists of the following 4 parts:

- temperature auto zero measurement (one of the 3 temperature sensors)
- temperature measurement (one of the 3 temperature sensors)
- pressure auto zero measurement
- pressure measurement.

The pressure is ratiometric measured by using the internal stabilized power supply as ratiometric reference and the chopped full differential preamplifier to amplify the bridge signal.

The temperature sensor input can be changed cyclically between two different input signals. One of them is used for the calibration of the pressure sensor signal. The other one can be used to measure the temperature of an external medium. It is also possible to use the same sensor for the two measurements. The temperature is directly measured by the ADC by using a voltage reference for absolute measurement. The current source for the temperature measurement is a constant reference current source (non-ratiometric to VDDA). The current source for the bridge temperature sensor is only activated during the temperature measurement cycle to reduce the influence of leakage current during the pressure measurement.

The ADC is a first order charge balancing converter in full differential switched capacitor technique. It is inherently monotone and insensitive against short and long term instability of the clock frequency. The result of the AD conversion is a clock pulse stream corresponding to the following equation:

$$ZOUT = N * ((VIN / VREF) + OFF))$$

ZOUT: number of counts (result of the conversion)

N:	number of clock pulses during one measurement
VIN:	differential input voltage of ADC (VIN=VINP-VINN)
VREF:	differential reference voltage (VREF=VREFP-VREFN)

OFF: offset value (OFF= $\frac{1}{16}$, $\frac{1}{8}$, $\frac{1}{4}$, $\frac{1}{2}$, controlled by the CMC)

With the OFF value a asymmetric sensor input signal can be shifted in the optimal input range of the ADC. The CMC controls the gain value of the preamplifier and the offset value of the ADC. This values are stored in the EEPROM.

Digital parts (calibration micro controller (CMC), ROM, EEPROM, clock generator, power on clear circuit, control logic, ZOUT counter, PWM, 3 wire interface, LIN Interface)

The digital parts control the working modes of the ASSP and calculate the result of the measurement by use of the actual input data of pressure and temperature and the stored calibration coefficients.

The ASSP includes a 3 wire interface for test and calibration (further called command mode). A external master devices can read out the results of the measurements and store the values for modes, gain and offset, the calibration data, the LIN configuration data and the customer specific data.

ZMD31030

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

3/16

During calibration cycles in command mode it is possible to read out the auto zero corrected values of the temperature and pressure measurements.

The calibration micro controller, the calibration procedure and the 3 wire calibration and test interface is described in detail in appendix A2.

The digital calculation done by the CMC compensate the following influences of the pressure output signal:

- Linear and quadratic pressure failure
- Linear and quadratic offset failure of the pressure signal over temperature
- Linear and quadratic sensor sensitivity failure over temperature.

Compensation of the medium temperature output signal (external diode): - Linear and quadratic temperature failure

The operation modes of the ASSP are the High-Side-Switch mode (HSS, output signal is PWM), the Low-Side-Switch mode (LSS, output signal is PWM) and the LIN interface mode (LIN, output signal is a digital word). In PWM modes the output signal is the calculated pressure value. The PWM minimal and maximal values can be

adjusted and will be stored in the EEPROM.

In the LIN mode the communication occurs with the help of an LIN interface. A LIN slave is implemented in the ASSP. In the LIN normal operation mode the master device can read out the calibrated results of the pressure measurement and of the second external temperature sensor measurement. In command mode a master device can test and calibrate the ASSP in the real application circuit (i.e. the pressure sensor device in the automotive package) over the one wire LIN pin. The ID for the normal operation mode is stored in the EEPROM and can be changed in the command mode. The ID for the command mode is fixed by metal wires in the digital part of the ASSP. The LIN interface is described in detail in appendix A3 and correspond to the LIN Specification, Revision 1.2. from 17.11.2000.

In the other application circuits (HSS and LSS) this command mode is also possible. The communication occurs over the pin LOUT (low side switch output pin) or the pin HOUT (high side switch output pin).

In LSS mode the active state of the data input and output is the same as in LIN mode (low active), in HSS this active state is inverted (high active) because of the open drain high side switch. The requirements for the output currents, output levels, input levels and slew rates of this communication are changed to the possibilities of the selected output mode specified for the normal operation mode as PWM output pin.

To switch the ASSP in this command mode a defined pulse cycle must be generated at the pin HOUT or LOUT during switch on the power supply. During this switched on time the ASSP output will be switched in tri state mode to allow the detection of the start pulses of this command mode.

High voltage protection (HV), short circuit protection and reverse polarity protection

The ASSP is directly supplied from the 12V power line.

An internal voltage regulator stabilized the internal supply voltage of approximately 5V.

To protect the ASSP against over voltage parallel voltage regulators, internal protection resistors and high voltage switches are integrated.

Reverse polarity protection is achieved with comparators, diodes and current limiting circuits.

These circuits allow a reverse polarity protection of the power supply pin and the used output pin without time limits.

The short circuit protection for the PWM output pin is realized by the control of the output level. When the output doesn't reach a specified value after a defined time period the ASSP recognize a shorted output and switch off the output switch.

The short protection for the LIN pin is realized by a current limited output switch.

Appendix A1 describes the behaviour of the ASSP in the several cases of protection.

Copyright © 2006, ZMD AG, Rev. 0.21, 2006-10-20

ZMD31030 Automotive Sensor Signal Conditioner with LIN Interface Datasheet

PRELIMINARY

4. Application Circuits

The figures 2, 3 & 4 show the circuit diagrams for applications of the ZMD31030. The shown application circuits are design objectives and can be changed after the ASSP design process and after the measurement of the engineering samples.

Fig. 2 : Circuit diagram for application "High-Side-Switch" of the ZMD31030

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

Fig. 3 : Circuit diagram for application "Low-Side-Switch" of the ZMD31030

Automotive Sensor Signal Conditioner with LIN Interface Datasheet

PRELIMINARY

Fig. 4 : Circuit diagram for application "LIN-Interface" of the ASSP "ZMD31030"

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

4.1. Sizing of the external devices in the application circuits (Fig. 2, 3 & 4)

The final values will be fixed after testing of the prototype samples in the customer application board.

NR.	PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
4.1.1	Capacitance	C1	all modes		100		nF
4.1.2	Capacitance	C2	high side switch mode		470		nF
4.1.3	Capacitance	C2	low side switch mode		220		nF
4.1.4	Capacitance	C2	LIN mode		220		nF
4.1.5	Capacitance	C3	high side switch mode		2.2		nF
4.1.6	Capacitance	C3	low side switch mode		2.2		nF
4.1.7	Capacitance	C3	LIN mode		220		рF
4.1.8	Resistor	R1	high side switch mode		27		Ω
4.1.9	Resistor	R1	low side switch mode		68		Ω
4.1.10	Resistor	R1	LIN mode		68		Ω
4.1.11	Diode VBAT-> R1 (Standard-Si-Diode)						

The pin VDD allows the connection of an external capacitance in case of EMV problems.

5. Electrical Specification

HSS – High Side Switch Mode, LSS – Low Side Switch Mode, LIN – LIN-Interface-Mode,

Pin VSS and VSSA are shorted

5.1. Absolute Maximum Ratings

(all voltages referred to VSSA/ VSS)

NR.	PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNITS
5.1.1	Supply voltage	VB	HSS, LSS mode	-18	18	V
5.1.2	Supply voltage	V _{B_LIN}	LIN mode	-18	40	V
5.1.3	Voltage at pins LOUT, HOUT	Vlout, Vhout	to VSSE	-18	18	V
5.1.4	Voltage at pin LIN	V _{LIN}	to VSS	-18	18	V
5.1.5	Voltage at all digital inputs	Vind, Voutd	to VSS	-0.3V	V _{DD} + 0.3V	
5.1.6	Voltage at all analog inputs and outputs	Vina, Vouta	to VSSA	-0.3V	V _{DDA} + 0.3V	
5.1.7	Storage temperature	T _{STG}		-40	150	ပ္
5.1.8	Storage temperature	T _{STG}	t < 10h	-40	170	C

5.2. Operating conditions

(all voltages referred to VSSA/ VSS)

NR.	PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
5.2.1	Supply voltage	VB	to VSS / VSSE	8.2	12	16.5	V
5.2.2	Supply voltage	V _{B_PROG}	to VSS / VSSE	12.25	12.5	12.75	V
5.2.3	Supply voltage	$V_{B_{LIN}}$	to VSS	8	12	18	V
5.2.4	Ambient temperature	TA		-40		125	ĉ
5.2.5	Ambient temperature EEPROM programming	T _{A_PROG}	3)	10		70	ç
5.2.6	Bridge Resistance	RBRIDGE		2.4		10	kΩ

7/16

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

8/16

5.3. Elect	5.3. Electrical Parameters (all voltages referred to VSSA/ VSS, $T_A = -40^{\circ} C \dots + 125^{\circ} C$)										
NR.	PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS				
5.3.1 Supply Voltage/ Supply Current											
5.3.1.1	Supply Current	Is	without IBRIDGE +			7.7	mA				
			$I_{PWM} + I_{LIN}$								
	5.3.2 PWM Output Parameters										
5.3.2.1	Output-H-Level HSS Pin	V _{PWMHSSH}	I _{SOURCE} =15mA,	4			V				
	HOUT		V _B ≥8.8V to VSSE								
5.3.2.2	Output-L-Level LSS Pin	V _{PWMLSSL}	I _{SINK} =12mA,			0.5V	V				
	LOUT		to VSSE								
5.3.2.3	Leakage current	I _{L_LOUT}	sink,			50	μΑ				
	Pin LOUT		H-Level								
5.3.2.4	Rise time HSS	t _{RISE}	V _{HOUT} = 0.5V-> 4V			15	μs				
5.3.2.5	Fall time HSS	tFALL	VLOUT= 4V-> 0.5V			15	μs				
5.3.2.6	PWM cycle time	t _{PER}		16	20	24	ms				
5.3.2.7	Resolution	RESPWMFS	PWM _{min_min}	11			Bit				
			PWM _{max_max}								
5.3.2.8	Resolution	RESPWMHS	PWM _{min_max}	10			Bit				
			PWM _{max_min}								
5.3.2.9	Min. duty cycle	PWM _{min}	8 Bit	1		99	%				
5.3.2.10	Max. duty cycle	PWM _{max}	8 Bit	1		99	%				
	5.3.3 Anal	og Inputs \	/BP, VBN (Pressu	ire Sensor	Bridge, I	PSB)					
			Polarity of Input Volt	age							
5.3.3.1	Input Voltage PSB	VINPSB	BIT REVIN=0		VBP-						
	Measurement				VBN						
5.3.3.2	Input Voltage PSB	VINPSB	BIT REVIN=1		VBN-						
	Measurement				VBP						
			Input Mode A								
5.3.3.3	Span	V _{PSB_A}		0.09			VDDA				
5.3.3.4	Mode A1 Input Range	VPSB_A1	OFF=1/16	-0.005625		0.084375	VDDA				
5.3.3.5	Mode A2 Input Range	V _{PSB_A2}	OFF=1/8	-0.01125		0.07875	VDDA				
5.3.3.6	Mode A3 Input Range	VPSB_A3	OFF=1/4	-0.0225		0.0675	VDDA				
5.3.3.7	Mode A4 Input Range	VPSB_A4	OFF=1/2	-0.045		0.045	VDDA				
5.3.3.8	Sensitivity	Spsb_a	V _{DDA} =5V		128		µV/LSB				
			Input Mode B		1						
5.3.3.9	Span	V _{PSB_B}		0.06			VDDA				
5.3.3.10	Mode B1 Input Range	V _{PSB_B1}	OFF=1/16	-0.00375		0.05625	VDDA				
5.3.3.11	Mode B2 Input Range	V _{PSB_B2}	OFF=1/8	-0.0075		0.0525	VDDA				
5.3.3.12	Mode B3 Input Range	V _{PSB_B3}	OFF=1/4	-0.015		0.045	VDDA				
5.3.3.13	Mode B4 Input Range	V _{PSB_B4}	OFF=1/2	-0.03		0.03	VDDA				
5.3.3.14	Sensitivity	S _{PSB_B}	V _{DDA} =5V		85		μV/LSB				

Copyright © 2006, ZMD AG, Rev. 0.21, 2006-10-20

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

9/16

NR.	PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS				
Input Mode C											
5.3.3.15	Span	V _{PSB_C}		0.036			VDDA				
5.3.3.16	Mode C1 Input Range	V _{PSB_C1}	OFF=1/16	-0.002		0.034	VDDA				
5.3.3.17	Mode C2 Input Range	V _{PSB_C2}	OFF=1/8	-0.004		0.032	VDDA				
5.3.3.18	Mode C3 Input Range	V _{PSB_C3}	OFF=1/4	-0.009		0.027	VDDA				
5.3.3.19	Mode C4 Input Range	V _{PSB_C4}	OFF=1/2	-0.018		0.018	VDDA				
5.3.3.20	Sensitivity	S _{PSB_C}	V _{DDA} =5V		50		μV/LSB				
	•		Input Mode D								
5.3.3.21	Span	V _{PSB_D}		0.02			VDDA				
5.3.3.22	Mode D1 Input Range	V _{PSB_D1}	OFF=1/16	-0.001		0.019	VDDA				
5.3.3.23	Mode D2 Input Range	V _{PSB_D2}	OFF=1/8	-0.002		0.018	VDDA				
5.3.3.24	Mode D3 Input Range	V _{PSB_D3}	OFF=1/4	-0.005		0.015	VDDA				
5.3.3.25	Mode D4 Input Range	V _{PSB_D4}	OFF=1/2	-0.01		0.01	VDDA				
5.3.3.26	Sensitivity	S _{PSB_D}	V _{DDA} =5V		29		μV/LSB				
	1	1	All Input Modes		1	1					
5.3.3.27	Input Leakage Current	I _{INL}	differential, 1)	-40		40	nA				
	5.3.4 Analog Inputs	<u>VTN1, VTN</u>	2 (External Tempe	erature Se	nsors, TS	E1 and TS	SE2)				
5.3.4.1	Input Voltage Range	VIN_TSE	to VDDB1_2	-810		-210	mV				
5.3.4.2	Sensitivity	STSE			0.85		mV/ LSB				
	1	5.3.5 Inter	nal Temperature S	Sensor (TS	SI)		1				
5.3.5.1	Sensitivity	STTSI		1.9	2.1	2.3	mV/K				
	(to temperature)										
5.3.5.2	Sensitivity	STSI			0.85		mV/ LSB				
	5.3.6 (Current Sou	rce for External Te	emperatu	re Sensor	0	1				
5.3.6.1	Output Current	ITSE	sink	30	40	50	μA				
5.3.6.2	Temperature Coefficient	TCITSE	1)	-1000		1000	ppm/K				
	1	5.3.7 Ar	nalog to Digital Co	nversion	1	0	1				
5.3.7.1	Resolution Pressure	RES _{PSB}	1)	4096			Counts				
5372			1)	-0.5		0.5	Bit				
5373	Integral Nonlinearity		roforrod to bost-fit	-0.5		0.5	Bit				
5.5.7.5	Integral Noninearity	INLPSB	straight line, 1)	-0.5		0.5	Dit				
5.3.7.4	Resolution Temperature	RESTS	1)	1024			Counts				
E 2 7 E	Differential Manlingerity		1)	0.5		0.5	Dit				
5.3.7.5	(TS)	DINLTS	1)	-0.5		0.5	Bit				
5.3.7.6	Integral Nonlinearity	INLTS	referred to best-fit	-0.5		0.5	Bit				
	(TS)		straight line, 1)				1				

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

NR.	PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS				
	5.3.8 Serial 3 wire Interface (all voltages referred to VSS)										
5.3.8.1	Input High Level	VIH	Pins DI and CLK	0.7		1	VDD				
5.3.8.2	Input Low Level	VIL	Pins DI and CLK	0		0.3	VDD				
5.3.8.3	Output Low Level DOUT=LIN	V _{OL_LIN}	I_sink = 10mA			1.2	V				
5.3.8.4	Output Low Level DOUT=LOUT	Vol_lout	I_sink = 10mA			0.5	V				
5.3.8.5	Output High Level DOUT=HOUT	Voh_hout	I_source = 10mA	4			V				
5.3.8.6	Pull down Current	IOL	I_sink, Pins DI and CLK	5		20	μA				
5.3.8.7	Load Capacitance DOUT	C _{L_DOUT}				2.5	nF				
	(HOUT, LOUT or LIN)										
5.3.8.8	Clock Frequency CLK	f _{CLK}	$C_{L_{DOUT}} = 2.5 nF$			400	kHz				
5.3.8.9	Clock Frequency CLK	f _{CLK}	$C_{L_{DOUT}} = 220 pF$			2000	kHz				
5.3.8.10	Programming Voltage	V _{VPP}			13		V				
5.3.8.11	Duration Programming Impulse	t _{VPP}	generated internally		10		ms				
	5.3.9 LIN Interface	(all voltages	s referred to VSS, see A	ppend	ix A3)						
5.3.9.1	Output low voltage level	V_{LIN_OL}	I _{SINK} = 40mA			1.2	V				
5.3.9.2	Output current	I _{LIN_L}	sink, driver on	40		120	mA				
5.3.9.3	Output current	I _{LIN_H}	source, driver off			1.1	VBAT/ R _{LIN}				
5.3.9.4	Pull up resistance	R _{SLAVE}	with serial diode	20	30	47	kΩ				
5.3.9.5	Output current	I _{LIN_H_OV}	sink, driver off,			20	μA				
	(Over voltage at LIN)		$VLIN \ge VBAT$,								
			$8V \le VBAT \le 18V$								
5.3.9.6	Output current	I _{LIN_LOSTGL}	driver off,	-1		1	mA				
	(GND lost)		$-12V \le VLIN \le 0V$								
5.3.9.7	Output current (GND lost, not	ILIN_LOSTGH	driver off,		t.b.d.						
	specified in LIN spec. Rev. 1.2)		-18V≤VLIN≤ -12V								
5.3.9.8	Output current	I _{LIN_LOSTBH}	driver off,	-40		40	μA				
	(VBAT lost)		excluded pull-up,								
			-18V≤VLIN≤ 18V								
5.3.9.9	Input low voltage level	I _{LIN_IL}	driver off	-8V		0.4 *					
	(dominant state)					VBAT					
5.3.9.10	Input high voltage level	I _{LIN_IH}	driver off	0.6 *		18V					
	(recessive state)			VBAT							
5.3.9.11	Slew Rate (Rising and falling	SR _{LIN} _	transmit and receive	1	2	3	V/µs				
	edges)										
5.3.9.12	Capacitance of slave node	C _{L_DOUT}			220	250	pF				

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

11/16

NR.	PARAMETER	SYMBOL CONDITIONS		MIN.	TYP.	MAX.	UNITS				
	5.3.10 Total System										
5.3.10.1	Startup time	t _{STUP}	Power up to first output value			40	ms				
5.3.10.2	Response Time	t _R				11	ms				
5.3.10.3	Cycle Time	t _C	Complete cycle			10	ms				
5.3.10.4	Nonlinearity	NL	referred to best-fit straight line 2)	-500		+500	ppm				
5.3.10.5	Temperature dependency PSB Measurement	t _{CPSBM}				20	ppm/K				
5.3.10.6	Temperature dependency TS Measurement	t _{CTSM}				100	ppm/K				

1) No measurement in mass production, parameter is guarantied by design or will be tested within the product qualification.

2) Analog Signal Conditioning and Analog Digital Conversion for Measurement of the Pressure Sensor Bridge

3) The increase of the maximum temperature for EEPROM programming is possible after successfully qualification measurements under extended ambient temperature.

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

12/16

6. I/O Pin Definition and Description (see Fig. 5)

TIF - test interface - 3 wire interface for calibration and testing

PIN DIE	PIN SSOP20	PIN CDIP28	Name	Description	Remarks
	1		N.C.	not connected	
1	2	8	VSSA	negative internal supply voltage analog part	
2	3	12	VDDA	positive internal supply voltage analog part	
3	4	13	HOUT	PWM output high side switch mode (HSS), TIF	CMOS, HV output
				data out and LIN data out for testing	
4	5	14	DI	digital input TIF data in	CMOS, internal pull-down
5	6	15	CLK	digital input TIF clock	CMOS, internal pull-down
6	7	16	VDD	positive internal supply voltage digital part	only connected in case of EMC problems
7	8	17	VB	positive supply voltage	CMOS, HV input/ output
8	9	18	VSS	negative internal supply voltage digital part,	
				negative supply voltage in LIN mode	
9	10	21	VSSE	negative supply voltage in HSS mode and LSS	CMOS, HV input/ output
4.0					
10	11	22	LOUT	PWM output low side switch mode (LSS), TIF	CMOS, HV output
11	12	25	LIN	LIN input/ output	CMOS_HV/input/output
	12	20	LIN	TIF data out for testing	
12	13	26	VBP	positive input sensor bridge	CMOS, analog input
13	14	27	VSSB	negative supply voltage sensor bridge	CMOS, analog output
14	15	28	VBN	negative input sensor bridge	CMOS, analog input
15	16	1	VTN1	negative input temp. sensor 1	CMOS, analog input
16	17	2	VDDB1	positive supply voltage sensor bridge	CMOS, analog output,
					internal conn. to VDDB2
17	18	3	VDDB2	positive supply voltage sensor bridge	CMOS, analog output,
					internal conn. to VDDB1
18	19	7	VIN2	negative input temp. sensor 2	CMOS, analog input
	20	4	N.C.	not connected	
		5	N.C.	not connected	
		6	N.C.	not connected	
		9	N.C.	not connected	
		10	N.C.	not connected	
		11	N.C.	not connected	
		19	N.C.	not connected	
		20	N.C.	not connected	
		23	N.C.	not connected	
		24	N.C.	not connected	

Copyright © 2006, ZMD AG, Rev. 0.21, 2006-10-20

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

13/16

7. Package

The ZMD31030 is supplied as die (size of bond pads is 90µm*90µm). Engineering samples are supplied in SSOP20 (209mil) or in CDIP28 (600mil).

Fig. 5: Packages of the ZMD31030 with the Pin Definitions

8. Test

Parameters given in this specification are design objectives. Final parameters which will be tested during series production will be specified after investigations in the engineering samples. The resulting data sheet includes all parameters which will be tested by ZMD. The test program is based on this data sheet. The fulfillment of the test specification is obligatory to deliver and obligates to purchase.

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

PRELIMINARY

14/16

9. ESD/Latch-Up-Protection

All Pins have an ESD Protection of >2000V.

ESD Protection referred to the human body model is tested with devices in SSOP20 packages during product qualification.

The Latch-up protection of the ZMD31030 is tested under the conditions shown in the following table with devices in SSOP20 packages during product qualification.

Pin-Nr.	Pin–Nr.	Name	Trigger	Trigger	Trigger	Trigger	Remarks
DIE	SSOP20		current	current	voltage	voltage	
			positive	negative	positive	negative	
			[mA]	[mA]	[V]	[V]	
1	2	VSSA	100	100			Ground
2	3	VDDA			8.25		internal Power Supply,
							Overvoltage Test
							with 1.5*VDDA _{MAX}
3	4	HOUT		100	27		
4	5	DI		100	9		
5	6	CLK		100	9		
6	7	VDD			8.25		internal Power Supply,
							Overvoltage Test
							with 1.5*VDD _{MAX}
7	8	VB		100	27		Power Supply,
							Overvoltage Test
							with 1.5*VB _{MAX}
8	9	VSS					Ground
9	10	VSSE					Ground
10	11	LOUT		100	27		
11	12	LIN		100	27		
12	13	VBP			9	4	
13	14	VSSB					internal Ground
14	15	VBN			9	4	
15	16	VTN1			9	4	
16	17	VDDB1			8.25		internal Power Supply,
							Overvoltage Test
							with 1.5*VDDA _{MAX}
17	18	VDDB2			8.25		internal Power Supply,
							Overvoltage Test
							with 1.5*VDDA _{MAX}
18	19	VTN2			9	4	

PRELIMINARY

ZMD31030

Automotive Sensor Signal Conditioner with LIN Interface

Datasheet

10. Reliability

The ZMD31030 is produced without burn-in procedure.

11. Related Documents (available on request)

- A1: Description of the high voltage protection circuit
- A2: Functional Description
- A3: Description of the LIN interface
- A4: Layout and pad coordinates

PRELIMINARY

ZMD31030

Automotive Sensor Signal Conditioner with LIN Interface Datasheet

12. Notes

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. ZMD assumes no obligation regarding future manufacture unless otherwise agreed in writing. The information furnished hereby is believed to be correct and accurate. However, ZMD shall not be liable to any customer, licensee or any other third party for any damages in connection with or arising out of the furnishing, performance or use of this technical data. No obligation or liability to any customer, licensee or any other third party shall result from ZMD's rendering of technical or other services.

For further information: ZMD AG Grenzstrasse 28 01109 Dresden, Germany Phone +49 (0)351-8822-366 Fax +49 (0)351-8822-337 sales@zmd.de www.zmd.biz

ZMD America, Inc. 201 Old Country Road, Suite 204 Melville, NY 11747, USA Phone +01 (631) 549-2666 Fax +01 (631) 549-2882 sales@zmda.com www.zmd.biz

ZMD America, Inc. 15373 Innovation Drive, Suite 110 San Diego, CA 92128, USA Phone +01 (858) 674-8070 Fax +01 (858) 674-8071 sales@zmda.com www.zmd.biz

Copyright © 2006, ZMD AG, Rev. 0.21, 2006-10-20

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.

16/16