

Preliminary. 1.1

2.5 W/CH Stereo Class D Audio power Amplifier (TSSOP)

REVISION HISTORY

Revision	<u>Description</u>	<u>Issue Date</u>
Rev. 0.1	Initial Issue	Oct. 26. 2007
Rev. 0.2	Modify Package Outline Dimension	Jan. 12. 2008
Rev. 1.0	Release Datasheet	Mar. 27. 2008
Rev. 1.1	Modify TSSOP package type R to A and I	Oct. 29. 2008

Preliminary. 1.1

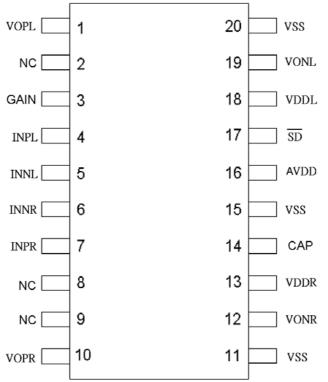
2.5 W/CH Stereo Class D Audio power Amplifier (TSSOP)

FEATURES

- 2.5 W/CH Into 4Ω from 5V power supply at THD = 10% (Typ.).
- 2.5V~5.5V Power supply.
- Low shutdown Current.
- Low Quiescent Current.
- Minimum external components.
- No output filter required for inductive loads.
- Output Pin Short-Circuit Protection (Short to Output Pin, Short to GND, Short to VCC)
- Low noise during turn-on and turn-off transitions.
- Lead free and green package available. (RoHS Compliant)
- `TSSOP20 pin Packaging Available.

APPLICATION

- Portable electronic devices.
- Mobile Phones, PDAs.
- DVD/CD Players, TFT LCD TVs/Monitors.
- USB Audio, 2.1 / 5.1 CH Audio System.


GENERAL DESCRIPTION

The LY8205 is a high efficiency, 2.5 W stereo class D audio power amplifier. It is a low noise, filterless PWM architecture eliminates the output filter, reducing external component count, system cost, and simplify design.

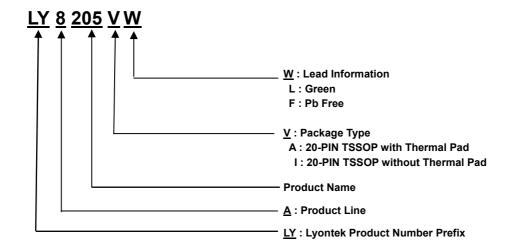
The LY8205 is designed to meet of Multimedia application includes mobile phones and other portable electronic devices. The LY8205 is a single 5V supply, it is capable of driving 4Ω speaker load at a continuous average output of 2.5 W/CH (5W in all) with 10% THD+N or 8Ω speaker load at a continuous average output of 1.3 W/CH (2.5W in all) with 10% THD+N. Not external heat-sink is required. Output pin short circuit (short to output pin, short to ground and short to VDD) protection prevent the device from damage during fault conditions

PIN CONFIGURATION

LY8205 TSSOP20 Pin Configuration (Top View)

Lyontek Inc. reserves the rights to change the specifications and products without notice.

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan

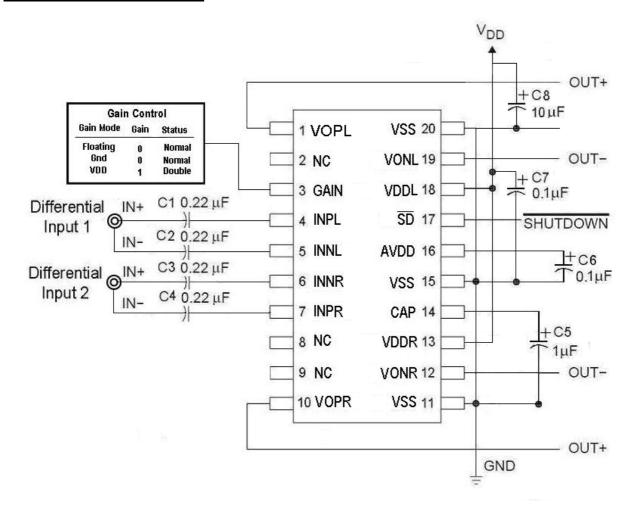


2.5 W/CH Stereo Class D Audio power Amplifier (TSSOP) Preliminary. 1.1

PIN DESCRIPTION

SYMBOL	Pin No.	DESCRIPTION		
SD	17	Shutdown pin. (when low level is active the pin).		
INPL	4	Positive input of left channel.		
INNL	5	Negative input of left channel.		
VOPL	1	Positive BTL output of left channel.		
VONL	19	Negative BTL output of left channel.		
VddL / VddR	13,18	Power supply		
AV _{DD}	16	Analog Power supply		
Vss	11,15, 20	Ground		
INPR	7	Positive input of right channel.		
INNR	6	Negative input of right channel.		
VOPR	10	Positive BTL output of right channel.		
VONR	12	Negative BTL output of right channel.		
CAP	14	Capacitance for power up delay.		
GAIN	3	Gain select		
NC	2,8,9	No Connection.		

ORDERING INFORMATION



2.5 W/CH Stereo Class D Audio power Amplifier (TSSOP)

Typical Application Circuit

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V _{DD}	6.0	V
		0 to 70 (C grade)	
Operating Temperature	TA	-20 to 80 (E grade)	
		-40 to 85 (I grade)	
Input Voltage	Vı	-0.3V to V _{DD} +0.3V	V
Storage Temperature	Tstg	-65 to 150	
Power Dissipation	Po	Internally Limited	W
ESD Susceptibility	Vesd	2000	V
Junction Temperature	Тјмах	150	
Soldering Temperature (under 10 sec)	Tsolder	260	

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

Preliminary. 1.1

2.5 W/CH Stereo Class D Audio power Amplifier (TSSOP)

ELECTRICAL CHARACTERISTICS (TA = 25 ,Unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output offset voltage (measured differentially)	Vos	V _I = 0 V, Av = 2 V/V, V _{DD} = 2.5 V to 5.5 V	-	-	25	mV
High-level input current	Пн	V _{DD} = 5.5 V, V _I = 5.8 V	-	-	100	uA
Low-level input current	l _{IL}	V _{DD} = 5.5 V, V _I = 0.3 V	-	-	5	uA
Power supply rejection ratio	PSRR	V _{DD} = 2.5 V to 5.5 V		-75	-55	dB
Common mode rejection ratio		V _{DD} =2.5V to 5.5V, V _{IC} = V _{DD} /2 to 0.5 V, V _{IC} = V _{DD} /2 to V _{DD} -0.8 V,		-60	-48	dB
		V _{DD} = 5.5V, No Load	-	6.8	9.0	
Quiescent Current / Ch	IQ	V _{DD} = 3.6V, No Load	-	5.6	-	mA
		V _{DD} = 2.5V, No Load	-	4.4	6.4	
Shutdown Current / Ch	Isp	VSHUTDOWN = 0.8V, VDD = 2.5V to 5.5V	-	0.6	4	μΑ

■ OPERATING CHARACTERISTICS (TA = 25 , Gain = 2V/V, RL = 8Ω, Unless otherwise noted)

PARAMETER	SYMBOL	. TEST CONDITION		MIN.	TYP.	MAX.	UNIT
	Po	THD+N= 10%, f = 1 kHz,	VDD=5V	=	2.5	-	
		$R_L = 4\Omega$	VDD=3.6V	-	1.3	ı	
		11_ 422	VDD=2.5V	-	0.5	ı	
		THD+N= 1%, f = 1 kHz, R _L = 4 Ω	VDD=5V	-	2.0	ı	
			VDD=3.6V	-	1.0	-	
Out Power / Ch			VDD=2.5V	-	0.4	-	w
		THD+N= 10%, f = 1 kHz, R_L = 8 Ω	VDD=5V	-	1.4	-]
			VDD=3.6V	-	0.7	-	
			VDD=2.5V	-	0.35	-	
		THD+N= 1%, f = 1 kHz, R _L = 8 Ω	VDD=5V	-	1.2	-	
			V _{DD} =3.6V	-	0.6	-	
			VDD=2.5V	-	0.3	-	
	: THD+N	Po = 1 W, f = 1 kHz, R _L = 8 Ω	V _{DD} =5V	-	0.15	-	
Total harmonic distortion + noise		Po = 0.5 W, f = 1 kHz, RL = 8 Ω	VDD=3.6V	-	0.18	1	%
		$P_0 = 0.2 \text{ W, f} = 1 \text{ kHz,}$ R _L = 8 Ω	VDD=2.5V	-	0.2	-	
Supply ripple rejection ratio	K svr	f = 217 Hz, V(RIPPLE) = 200mVpp, inputs ac-grounded with Ci = 2uF	V _{DD} =3.6V	-	-71	-	dB
Signal-to-noise ratio	SNR	Po= 1 W, R _L = 8 Ω	VDD=5V	-	97	-	dB
Outro to allo and and a	Vn	V _{DD} = 3.6 V, f = 20 Hz to 20 kHz,	No weighting	-	48	-	11//24/2
Output voltage noise		Inputs ac-grounded with Ci = 2 µF	A weighting	-	36	-	uVRMS
Common mode rejection ratio	CMRR	Vic = 1 Vpp , f = 217 Hz	VDD=3.6V	-	-63	-	dB
		V _{DD} = 3.6 V		-	100	-	ms

Lyontek Inc. reserves the rights to change the specifications and products without notice.

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan

2.5 W/CH Stereo Class D Audio power Amplifier (TSSOP)

Application Information Circuit

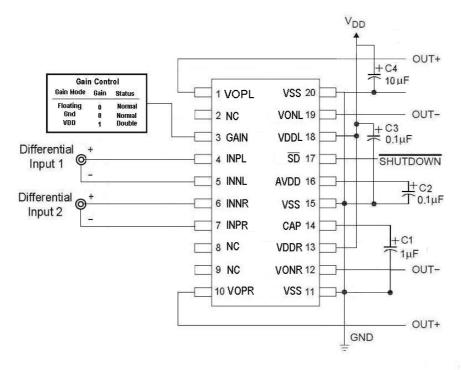


Figure 1. Application Schematic With Differential Input Configuration

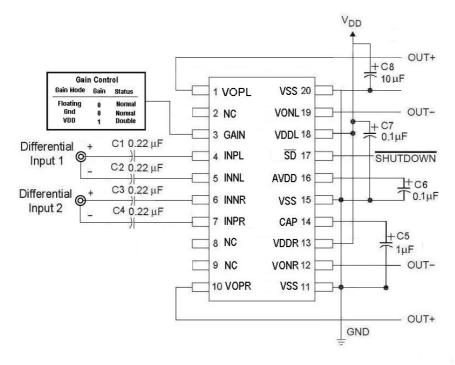


Figure 2. Application Schematic With Differential and Capacitors Input Configuration

2.5 W/CH Stereo Class D Audio power Amplifier (TSSOP)

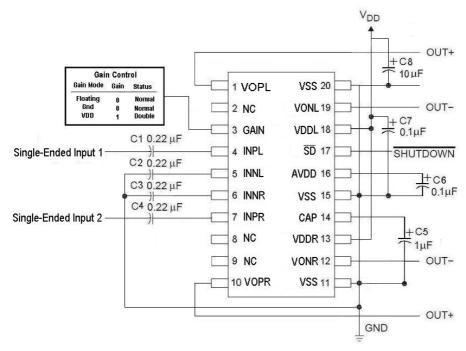


Figure 3. Application Schematic With Single-Ended Input

APPLICATION INFORMATION

Fully Differential Amplifier

The LY8205 is a fully differential amplifier with differential inputs and outputs. The fully differential amplifier consists of a differential amplifier and a common-mode amplifier. The differential amplifier ensures that the amplifier outputs a differential voltage on the output that is equal to the differential input times the gain. The common-mode feedback ensures that the common-mode voltage at the output is biased around $V_{\rm DD}/2$ regardless of the common-mode voltage at the input. The fully differential LY8205 can still be used with a single-ended input; however, the LY8205 should be used with differential inputs when in a noisy environment, like a wireless handset, to ensure maximum noise rejection.

Advantages of Fully Differential Amplifiers

Input-coupling capacitors not required:

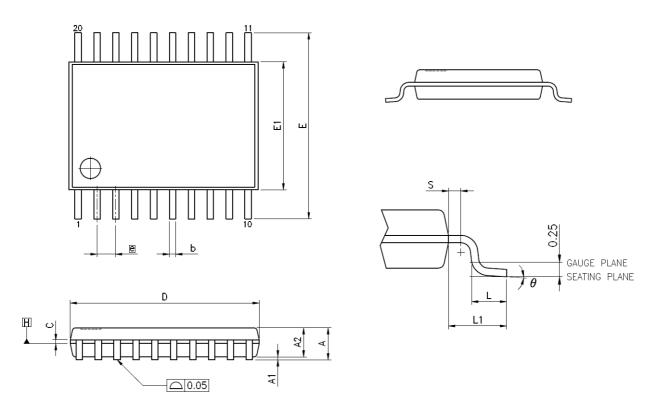
The fully differential amplifier allows the inputs to be biased at voltage other than mid-supply. For example, if a codec has a midsupply lower than the midsupply of the LY8205, the common-mode feedback circuit will adjust, and the LY8205 outputs will still be biased at midsupply of the LY8205. The inputs of the LY8205 can be biased from 0.5 V to V_{DD} - 0.8 V. If the inputs are biased outside of that range, input - coupling capacitors are required.

Midsupply bypass capacitor, C(BYPASS), not required:

The fully differential amplifier does not require a bypass capacitor. This is because any shift in the midsupply affects both positive and negative channels equally and cancels at the differential output.

Better RF-immunity:

GSM handsets save power by turning on and shutting off the RF transmitter at a rate of 217 Hz. The transmitted signal is picked-up on input and output traces. The fully differential amplifier cancels the signal much better than the typical audio amplifier.



2.5 W/CH Stereo Class D Audio power Amplifier (TSSOP)

PACKAGE OUTLINE DIMENSION

20 Pin TSSOP Package Outline Dimension

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

SYMBOLS	MIN.	NOM.	MAX.		
Α	_	_	1.20		
A1	0.05	_	0.15		
A2	0.80	0.90	1.05		
b	0.19	_	0.30		
С	0.09	_	0.20		
D	6.40	6.50	6.60		
E1	4.30	4.40	4.50		
E	6.40 BSC				
е	0.65 BSC				
L1	1.00 REF				
L	0.50	0.60	0.75		
S	0.20	_	_		
θ	0,	_	8*		

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan